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Abstract

The electronic charge density is the central quantity in density functional theory. It can be expressed as the diagonal
elements of the density matrix in its real space representation, which can be computed by a recursion method based on
the Trotter formula. This allows for an orbital free computation of the charge density in the Kohn Sham formalism at
finite temperature whose numeric complexity increases linearly with the size of the system (that is, an order N method).

No assessment of the numerical properties such an approach has been presented yet, and this paper aims to analyze its
convergence properties.

In particular, we wish to understand its convergence properties as a function of the number of recursion steps, to estab-
lish an error estimate in order to devise a stopping criterion, and to analyze the ‘‘locality properties’’ of the method which is
necessary to make it an order N method. We illustrate the assessment with numerical tests performed for the free electron
gas and for Helium at a density and high temperature relevant to shock physics.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The recursion method has already a long history as a method to compute the density of states in electronic
structure calculations [1,2]. It is generally formulated in a tight binding approach, where the small size of the
basis set allows for the computation of diagonal and non-diagonal matrix elements of the density matrix in a
small computer time. This method has been extended more recently to perform total energy calculations as
well as molecular dynamic simulations within the so-called ‘‘bond order potential’’ formalism [3]. The method
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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does not require the computation of the wave functions (it is an orbital free method), and is therefore adapted
to systems for which such calculations would lead to very large computation times. This is for example the
case of high temperature plasmas, where the broadening of the Fermi–Dirac distribution leads to a rapid
increase of the number of populated states. This proliferation has so far limited the temperature range which
has been covered by ab initio molecular dynamics methods where the electrons receive full quantum mechan-
ical treatment and the ions are propagated classically on the resulting energy surface. While this approach has
been extensively used in the past ten years in this field and was rather successful at computing the physical
properties of dense plasmas, [4–7] it has only been possible to perform simulations above 10 eV or so by resort-
ing to approximate expressions of the kinetic energy functional [8].

Besides tight binding formulations, an alternative setting of the recursion method, more easily extensible
toward high temperatures, has been devised by Baroni and Giannozzi [9], in which the electronic density is
directly computed on a regular mesh in real space. In their approach, the basis set in made of d functions cen-
tered on grid points, and the electronic density is computed from the knowledge of the diagonal matrix ele-
ments of the resolvent operator of the Hamiltonian for every elements of this basis set. This method is
therefore well suited for an implementation in the Kohn–Sham formalism, since the electronic density is
the central quantity in this formalism, and the basis set can be easily increased to achieve convergence. Indeed,
the basis set might become very large, and this drawback can be somewhat alleviated by the use of massively
parallel computers. An extension of this technique to finite temperature has more recently been presented [10]
and an application to an hydrogen plasma has been performed by Bagnier, Dallot and one of the authors. In
the course of this work we noted that it was not always clear how to terminate the density matrix expansion in
continued fraction (the so-called terminator problem, a general difficulty of the recursion method see e.g.[11]).
Therefore, a variant of this approach was later elaborated, which relies on a direct evaluation of the diagonal
elements of the Fermi density matrix operator at finite temperature. This approach has already been presented
in a previous paper [12], but no assessment of its numerical properties were given at the time.

The aim of the present work is to analyze the convergence properties of this latter method in many respects:

� Understand the convergence properties as a function of the number of recursion steps.
� Establish an error estimate to have a criterion for stopping the recursion process.
� Analyze the ‘‘locality properties’’ of the method, this last point being necessary to achieve order N

scalability.

The paper is organized as follows: in the next section we recall the salient formulas of the method, and in
the next three sections, we give an analysis of the three points mentioned above. In the last section, we illus-
trate with numerical tests, first for the independent electron gas for which the solution is known, and for
Helium on a lattice. For this last system, the thermodynamic conditions are approximately five fold compres-
sion, and a temperature of about 13 eV (150,000 K). This corresponds to conditions one might encounter in
shock experiments [13], and we compare our density with the one obtained with the Abinit code [14].
2. Short description of the method

In this paper, we consider a high temperature plasma, described within the Kohn–Sham–Mermin formal-
ism (see e.g. [15]). In this formalism, the system of N nuclei and ZN electrons is confined in a cubic box, with
periodic boundary conditions. Moreover, we will consider the so-called C point, that is, we will work on the
space of periodic wave functions. In other words, all quantities below should be considered as being defined on
a torus constructed on the cubic box. In this setting, the electrons are described by a one electron Hamiltonian
H, given by (in atomic units):
H ¼ �D=2þ V ðrÞ ð1Þ

where V(r) is the local effective potential. In the sequel, we will describe the nuclei–electron interaction by a
smooth local pseudo-potential [16], and we will consider that V is a C1, periodic function defined on our cubic
box of size L. At finite temperature, the electrons are distributed according to the Fermi–Dirac distribution,
given in operator form by:
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F ¼ e�bðH�lÞ

1þ e�bðH�lÞ ð2Þ
where b is the inverse temperature and l is the chemical potential. At this point, we need some properties of
the Fermi–Dirac density matrix to proceed further.

2.1. The Fermi–Dirac density matrix

The exponential of the Hamiltonian e�bH has been extensively described in the review paper of Simon [17].
In particular, we know that the exponential can be represented by a C1 kernel K(x,y), that is we can write for
any function (e.g. in Lp):
e�bH f ðxÞ ¼
Z

Kbðx; yÞf ðyÞdy ð3Þ
where the density matrix Kb(x,y) is a periodic, positive, C1 function in (x,y). The integral, as well as all our
functions are defined on a torus. We want to show that the Fermi–Dirac density matrix can be represented in a
similar way.

Since e�bH is self-adjoint in L2 with a positive spectrum, the operator I + e�bH is invertible, and we have the
spectral representation in L2:
e�bðH�lÞ

1þ e�bðH�lÞ ¼
X1
i¼0

e�bð�i�lÞ

1þ e�bð�i�lÞ j/iih/ij ð4Þ
where |/iæÆ/i| denotes the orthogonal projector on /i, the ith eigenvector of H, with eigenvalue �i.
Now, for each eigenfunction, we can obtain a upper bound by using:
j/iðxÞj ¼ eb0�i j
Z

Kb0 ðx; yÞ/iðxÞdxj 6 Cb0e
b0�i ð5Þ
with Cb0 ¼ supx½
R

Kb0 ðx; yÞ2dy�1=2, since i/ii2 = 1. A similar upper bound can also be obtained for any deriva-
tive of the eigenfunctions. From this upper bound, used with b 0 < b, we obtain that the series given by:
qðx; yÞ ¼
X1
i¼0

e�bð�i�lÞ

1þ e�bð�i�lÞ /iðxÞ/iðyÞ ð6Þ
(and its derivatives) converges uniformly in (x,y),and we therefore have that the Fermi–Dirac density matrix,
q(x,y), is C1 and satisfies:
e�bðH�lÞ

1þ e�bðH�lÞ f ðxÞ ¼
Z

qðx; yÞf ðyÞdy ð7Þ
Finally, the electronic density can be defined in terms of the Fermi–Dirac density matrix as [15]:
qðxÞ ¼ qðx; xÞ ð8Þ
2.2. Outline of the calculation procedure

Our calculations will be performed on a regular cubic orthonormal grid with periodic boundary conditions.
Introducing the step size h of the grid, the basis vectors vi;h

0 , are piecewise constant functions defined as
vi;h
0 ðrjÞ ¼

dij

h3
¼ h�3 if i ¼ j

0 if i 6¼ j

(

And the electronic density is approximated as
qhðriÞ ¼ vi;h
0

e�bðH�lÞ

1þ e�bðH�lÞ

����
����vi;h

0

� �
¼ hvi;h

0 j1jv
i;h
0 i � vi;h

0

1

1þ e�bðH�lÞ

����
����vi;h

0

� �� �
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In view of the fact that the Fermi–Dirac operator possesses a C1 kernel, this approximation converges at least
as h2 if we take ri as the mid point of our discretization grid, in which case,
1

h6

Z
Xh

Z
Xh

qðx; yÞdxdy � qðriÞ
����

���� 6 Ch2 ð9Þ
and the integral is computed over Xh the support of vi;h
0 . We note at this point that different basis functions, as

e.g. gaussians could be used and yield more accurate results at the expense of a more complicated implemen-
tation. To evaluate the last term of this expression, we transform it in tridiagonal form, on a basis whose first
vector is ui;h

0 ¼ h3=2vi;h
0 according to the Lanczos procedure ðui;h

�1 ¼ ui;h
0 Þ:
e�bðH�lÞui;h
n ¼ bi;h

n ui;h
n�1 þ ai;h

n ui;h
n þ bi;h

nþ1ui;h
nþ1
In this expression, the un are orthonormal (hence the h3/2 factor in front of h3=2vi;h
0 ) and the coefficients of the

recursion satisfy:
an ¼ hunje�bðH�lÞjuni
bn ¼ hun�1je�bðH�lÞjuni
(In the sequel and for clarity we will drop unless specified the indexes i and h in ai;h
n and bi;h

n and ui;h
n .) The den-

sity at ri is the diagonal matrix element of the Fermi density matrix and can therefore be expanded in a con-
tinued fraction as [18]:
h3qhðriÞ ¼ 1þ 1

�1� a0 �
b2

1

�1�a1�
b2

2

. .
.

ð10Þ
noted 1þ
P1

k¼0ð�b2
kÞjð�1� akÞ.

As we will show below, the use of the exponential of H (instead of H directly as in the original method)
presents some advantages in particular concerning the termination of the continued fraction (see (4)), but also
some drawbacks. In particular, the evaluation of an exponential can be quite expensive, a difficulty which is
bypassed in [12], by using the Trotter formula in a partial fraction decomposition of the Fermi density matrix.
Specifically, we recast the Fermi density matrix as a sum of Fermi density matrices at a higher temperature
2pT, where p is an integer, and shifted chemical potential using the formula:
1

1þ e�bðH�lÞ ¼
1

2p

X2p�1

j¼0

1

1þ zje
�bðH�lÞ

2p

¼ 1

2p

X2p�1

j¼0

zj

zj � e�
bðH�lÞ

2p

ð11Þ
where, zj = exp(ip(2j + 1)/2p).
For large p, we can use the Trotter formula (or, more accurately, the symmetric Feynmann–Strang split-

ting) and approach the operator e�
bðH�lÞ

2p by the product of three operators, that is:
e�
bðH�lÞ

2p ’ e
bl
2pe�

bV
4p e

bD
4p e�

bV
4p ð12Þ
The action on a vector ju> of each term of this product can then be rapidly evaluated.
The consequences of these transformations on the precision and on the convergence properties on the

method have not yet been analyzed, and our aim is to present in this paper some results in this direction.
We will particularly concentrate on the simulation of plasmas at finite temperature, a system for which the

method is particularly well suited.

3. The effect of the Feynmann–Strang splitting

When using the expansion (11), in order to evaluate vh 1
1þe�bðH�lÞ

��� ���vh
D E

we need to evaluate terms of the form:

vh 1

1þzje
�bðH�lÞ

2p

�����
�����vh

* +
. To this end, we replace the exponential T ¼ e�

bðH�lÞ
2p , in the denominator of this last term by

the splitting S ¼ e
bl
2pe�

bV
4p e

bD
4p e�

bV
4p :
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Using formula (11) again, but now with S instead of T, the error induced by using the splitting is given by
Ævhjdjvhæ, with:
d ¼ 1

1þ T n �
1

1þ Sn ð13Þ
where we change in this section, the notation 2p by n. Since vh, is bounded in L1 uniformly in h, to achieve an
upper bound of |Æuh|d|uhæ| independent of h, we need to bound objects of the form |Æfjdjgæ| in terms of the L1

norm of f and g.
The convergence of the difference S � T as a function of the inverse temperature has been recently studied,

and results have been obtained in the literature in the i ip,p norms, that is their norms as operators from Lp to Lp.
We will use the following result, whose proof, in different settings can be found in [19–21]:

Proposition 1. If the effective potential is a C1 function defined on a torus, we have iS � Tip,p 6 C(b/n)2, for

1 6 p <1.

Since both f and g are bounded in L1, those results are not sufficient, and we need upper bounds in the i ip,q

norms.
Let us now study our operator d, when using the L1 norm.
We first note that since the spectrum of Tn and Sn are positive, the operators I + Tn and I + Sn are invertible

in L2, and the norm of their inverse is bounded by 1, that is i(I + Tn)�1i2 6 1 and i(I + Sn)�1i2 6 1.
We now rewrite our difference (using Dyson’s formula):
d ¼ 1

1þ T n �
1

1þ Sn ¼ �
1

1þ T n ðT n � SnÞ 1

1þ Sn ð14Þ
and in a similar fashion as in [20]
d ¼ � 1

1þ T n

Xn�1

j¼0

T n�j�1ðT � SÞSj 1

1þ Sn ð15Þ

¼ �
Xn�1

j¼0

T n�j�1 1

1þ T n ðT � SÞ 1

1þ Sn Sj ð16Þ
To obtain our result, that is norms of the i ip,q type, we will use the basic theorem (see e.g. [17]):

Theorem 1. If b belongs to a compact set of R , we can find a constant C, independent of b such that
jje�bH jjp;q <
C
bc with c ¼ 3

2

1

p
� 1

q

� �
and 1 6 p 6 q 61 ð17Þ
Proof. See [17]. h

We will use two particular cases:
jje�bH jj1;1 <
C

b3=2
and
jje�bH jj1;2 <
C

b3=4
When V(x) is C1 on a torus, similar bounds can be obtained for the Feynmann–Strang splitting S, since
ðSf ÞðxÞ ¼ e�bV ðxÞ=2

R
K0

bðx; yÞe�bV ðyÞ=2f ðyÞdy, where K0
bðx; yÞ is the (positive) kernel associated with ebD/2, and

the terms e�bV(y)/2 is bounded in L1. The same line of reasoning can be applied to Sj where j is an integer.
We can now state our result:

Proposition 2. If the potential is C1 is defined on a three dimensional torus we can find a constant C, such that,

for any f and g in L1 we have, for n > 1:



2068 S. Le Roux, G. Zérah / Journal of Computational Physics 226 (2007) 2063–2077
jhf jdjgij < C
b1=2

n
jjf jj1jjgjj1
Proof. Of the terms appearing in the sum (16) we first consider terms for which j 6¼ 0 and j 6¼ n � 1. h

We have
jjSjjj1;2 <
C

ðjb=nÞ3=4
and jjT n�j�1jj1;2 <

C

½ððn� j� 1Þb=nÞ3=4�
and since the i i2,2 norm of T � S is bounded by ðbn Þ
2 and we have the upper bounds i(I + Tn)�1i2 < 1, and

i(I + Sn)�1i2 < 1:
hf jT n�j�1ðI þ T nÞ�1ðT � SÞðI þ SnÞ�1Sjjgi ð18Þ

6 C
b1=2

n2

1

ðj=nÞ3=4½ððn� j� 1Þ=nÞ3=4�
jjf jj1jjgjj1 ð19Þ
The sum over of those terms yields:
b1=2

n2

Xj¼n�2

j¼1

1

ðj=nÞ3=4½ððn� j� 1Þ=nÞ3=4�
6 C

b1=2

n
ð20Þ
Since,
1

n
lim
n!1

Xj¼n�2

j¼1

1

ðj=nÞ3=4½ððn� j� 1Þ=nÞ3=4�
¼
Z 1

0

dx

x3=4ð1� xÞ3=4
<1 ð21Þ
We now consider the terms with j = 0 or j = n � 1, and give the details for the j = 0 term only. This term can
be written:
f
T n�1

1þ T n ðT � SÞ 1

1þ Sn

����
����g

� �
¼ f T n�1 1

1þ T n ðT � SÞ Sn

1þ Sn

����
����g

� �
� f T n�1 1

1þ T n ðT � SÞ
����

����g
� �
The first term of the right hand side can be treated as above, and yields a upper bound in b1=2

n2 , and for the sec-
ond term, using a similar transformation, we need to consider:
f
T n�1

1þ T n ðT � SÞ
����

����g
� �

¼ hf jT n�1ðT � SÞjgi � f
T 2n�1

1þ T n ðT � SÞ
����

����g
� �
For the first term, we use the L1 norm of (T � S): iT � Si1 < C(b/n)2 and (for n > 1) the norm of Tn�1:
kT n�1k1;1 6 C 1

b3=2 to obtain:
< f jT n�1ðT � SÞjg >6 C
b1=2

n2
jjf jj1jjgjj1 ð22Þ
We finally write the second term as
� f T n�1 1

1þ T n T nðT � SÞ
����

����g
� �

ð23Þ
and obtain, using i i1,2 norms of Tn�1,Tn, the L2 norm of 1
1þT n and the L1 norm of (T � S) again a upper bound

by C b1=2

n2 jjf jj1jjgjj1.
We note that two points are not treated in the present Proposition. First, the case n = 1 requires a different

approach, using techniques developed in the already cited references. Second, it might be possible to obtain a

better scaling, as e.g. b1=2

n2 , using lines of the types presented in the paper by [20]. We leave this for a future work.
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4. Terminator of the continued fraction

The continued fraction (Eq. (10)) is in principle infinite, but in practice must be terminated, and it is cus-
tomary to replace the sum of the remaining terms of the fraction by a terminator T(z) deduced from some
closure relation. In standard applications of the recursion method, when the Hamiltonian itself is tridiagonal-
ized, devising a terminator is a difficult procedure. This is in contrast to our case, where we can show that the
recursion coefficients applied to the exponential tend to zero and setting T(z) = 0 yields excellent convergence
properties.

As already stated, e�b(H�l) possesses a discrete spectrum given by ki ¼ e�bð�i�lÞ which tend to zero at infin-
ity. Therefore, e�b(H�l) is compact and this is a sufficient condition to insure that the recursion coefficients an,
bn tend to zero.

Moreover, the operator is trace class [17] and from this we have a very simple proof of this result. Indeed:
Trðe�bHÞ ¼
X

n

an <1

Trðe�2bH Þ ¼
X

n

a2
n þ 2

X
b2

n <1
Although the recursion method is, generally speaking, rapidly convergent [22], this has been shown to be the
case for integrated quantities such as the density of states. We here consider directly the electronic density,
which is slowly convergent a quantity. Indeed, when trying to devise error estimates in the next section we will
directly see that the convergence of bn toward zero is an essential property.
5. An asymptotic estimate of the continued fraction

The next step in the study of the convergence properties of the method is to develop an error estimate of the
density as a function of the rank of recursion. It has not been possible to find such a bound, but we have found
an asymptotic estimate of the error as a function of the recursion coefficients which is empirically very good.
This estimate will be shown to be expressed as a simple function of the current values of an and bn, and this
therefore allows to stop the calculation when a prescribed precision has been achieved.

To present the error estimate, we start by a general result about continued fractions. Consider:
1

A0 þ B1

A1þ
B2

A2þ���þ
Bn
An

¼:
N n

Dn
where Nn and Dn verify the recurrence formulas:
N 0 ¼ 1 D0 ¼ A0

N 1 ¼ A1 D1 ¼ A0A1 þ B1

Nn ¼ AnNn�1 þ BnNn�2 Dn ¼ AnDn�1 þ BnDn�2
Now, it is more transparent to write the fraction as a series:
Nn

Dn
� N 0

D0

¼
Xn

k¼1

Sk where Sk ¼ ð�1Þk
Qk

i¼1Bi

DkDk�1

ð24Þ
In the case where the recursion coefficients are positive, the series Sk is alternating and decreasing in absolute
value as can easily seen by considering j Sn

Snþ1
j, together with the recurrence relation for Dn.
Sn

Snþ1

����
���� ¼ Dnþ1

Dn�1Bnþ1

¼ Anþ1Dn þ Bnþ1Dn�1

Dn�1Bnþ1

P 1 ð25Þ
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It is then convergent toward a limit l we then have the classical upper bound:
N n

Dn
� l

����
���� 6 jSnþ1j ¼

Qnþ1
i¼1 Bi

DnDnþ1
It turns out, that in our case where the coefficients are not positive, this upper bound can be turned in an
asymptotic estimate (for which use is made of the convergence of the bn):
N n

Dn
� l

����
���� ¼

Qnþ1
i¼1 b2

i

jDnDnþ1j
1þ Oðb2

nþ2Þ
	 


ð26Þ
A proof of this asymptotic expansion, which is somewhat technical is given in the Appendix.

6. Locality property

Finally, an important aspect of order N methods, is the locality property. In the case of a local potential,
the recursion vector un, is confined to a region of space whose radius increases like a diffusion process with the
number of recursion steps.

For example, in the case of the electron gas, since we use the exponential of the Hamiltonian to construct

the recursion basis, the recursion vector belongs to the space spanned by ðu0; e
b
2pð

D
2þlÞu0; . . . ; en b

2pð
D
2þlÞu0Þ. Since u0

is an approximation of a Dirac distribution, the ek b
2p

D
2þlð Þu0 are Gaussian and the support (up to a certain tol-

erance) of the recursion vector is the same as the support of the widest Gaussian, that is en b
2p

D
2�lð Þu0. Therefore,

if we a priori estimate the number of recursion steps is needed, we will be able to limit a priori the support of
the recursion vectors and therefore effectively localize our calculations around a certain finite neighborhood of
each point in space. Unfortunately, the estimate (Eq. (26)) requires the knowledge of the recursion coefficients,
and is therefore not an a priori estimate. On the other hand, for the case of Helium, we empirically noticed that
the number of recursion steps weakly depends upon the point where the density is computed, allowing to effec-
tively localize the recursion vector. In practice, we therefore apply the Hamiltonian in a region of space wide
enough to accommodate the maximum expected support of the recursion vectors convoluted by the Gaussian

e
b
2p

D
2þlð Þu0.
7. Numerical studies of the convergence properties

In this section, we will study numerically the convergence of the method with respect to the different param-
eters in the case of the electron gas and Helium in the condition of strong laser shock experiments [13]. We will
first study the convergence with respect to the number of recursion steps, and then compare it with our error
estimate. Finally, we will analyze the effect of a localization of un.
7.1. The free electron gas

The free electron gas in a periodic cubic box of length L, in the space of periodic wave functions (C point)
allows us to investigate the convergence properties of the method. For a given chemical potential and temper-
ature, the eigenenergies, corresponding wave functions and electronic density are given by [23]:
�n1;n2;n3
¼ 2p2

L2
n2

1 þ n2
2 þ n2

3

	 

wn1;n2;n3

ðrÞ ¼ 1

L3=2
exp i

2p
L
ðn1xþ n2y þ n3zÞ

� �

q ¼ 1

L3

X
n1;n2;n3

1

1þ exp b 2p2

L2 ðn2
1 þ n2

2 þ n2
3Þ � l

� �� �
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The operator e�b �D
2�lð Þ is expressed in real space as a convolution with a normalized Gaussian:
Fig. 1.
The ca
e�b �D
2�lð Þd0 ¼ eblT b with T bðrÞ ¼

1

2pb

� �3
2

e�
1

2bjrj
2

The discretization step h must be chosen in order to yield a good representation of Tb, and therefore must be
proportional to

ffiffiffi
b
p

to yield a constant precision. In Fig. 1 we display the convergence of the density as a func-
tion of the recursion order for different discretization steps h, for a system at a temperature T = 150,000 K, in
a box of size L = 30 Bohr and a chemical potential taken as l = 0. The first information that can be drawn
from the figure is that the method is accurate: for sufficiently small a discretization step (here smaller than
0.75 Bohr) the method converges toward the exact result up to machine precision and it takes less than 5 steps
to have an error on the density less than 10�8.

If we now consider a larger step size (up to 1.2, in Fig. 1), the convergence rate toward the exact density
remains the same up to a point beyond which the error remains constant as a function of the recursion order:
that is an indication of the stability of the method.

Although we do not need to use the Trotter formula for the free electron gas, it is interesting to see how the
method behave when we use this formula with finite values of p. In this case we expect that the convergence of

the various terms of the sum (11) are different, since for large p some zi approach 1 and 1� e�
bð�i�lÞ

2p becomes

very small when bð�i�lÞ
2p is small. Moreover, the Gaussian is now given by
e�
b
2p �

D
2�lð Þd0 ¼ e

b
2plT b

2p
with T b

2p
ðrÞ ¼ p

pb

� �3
2

e�
p
bjrj

2

and are therefore of a smaller variance. Then with a given discretization step, the final discretization error
should increase with p, and those two effects combine to deteriorate the convergence properties. That result
is shown on Fig. 2: with an increasing Trotter parameter, the rate of convergence is decreased and, when
the parameter is too large, the maximum achievable precision is diminished. For instance, a Trotter parameter
of 25 yields in this case a 10�7 relative precision after 25 steps, which could be improved further by reducing
the step size and increasing the number of recursion steps.

In fact, we found empirically that the speed of convergence is inversely proportional to
ffiffiffi
p
p

.
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7.2. Helium CFC

We will now present some tests for a realistic system, that is using a non-zero potential. We compare the
density computed by the present method and the density computed by Abinit, a code for performing electronic
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Fig. 3. difference between Abinit’s result and recursion’s result. The calculation refers to four Helium atoms at 150,000 K, in a cubic box of
size 6.35 Bohr placed in a CFC lattice. The potential is the self-consistent potential computed by Abinit; The cut-off is 120 Hartree for the
step size of 0.99 Bohr, and the number of grid points has then been divided by 2 and 4 to give the potential for step size of 0.198 Bohr and
0.397 Bohr, and the cut-off is 50 Hartree for the step size of 0141 Bohr. The chemical potential is the one computed by Abinit:
l = �0.59330 Hartree. The figure draws the electronic density along the long diagonal of the cell.
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structure calculations using a plane-wave method [14]. The test case have been done with a periodic cubic box
of length 6.35 Bohr containing four Helium atom in a CFC lattice at 150,000 K. The atoms are at the vertex
and the center of the faces, and the density have been computed along the long diagonal of the cell. The self-
consistent potential and density have been computed with Abinit, using a Troullier–Martins pseudo-potential
[24], the cut-off have been determined in order to achieve a maximum relative error of about 10�3 on the
density.

The difference between the density computed with Abinit and the present method is drawn on Fig. 3, for
different step size of the recursion. The self-consistent potential was first computed with Abinit, with a cut-off
of 120 Hartree that is real space step size of 0.099 Bohr (we also used the same potential on doubled and qua-
drupled grids that is with grid size of 0.198 Bohr and 0.397 Bohr). Generally speaking, the convergence of the
density is rather good, the maximum error being at the vertex that is, where the potential is the sharpest , and
is best at the point where the potential varies slowly. We notice that the the density computed by Abinit is very
sensitive to the parameters of the calculation: reducing the cut-off to 50 Hartree (grid size: 0.141 Bohr) leads to
a larger variation than doubling the grid size of the recursion.

Fig. 4 compares

Qnþ1

i¼1
b2

i

jDnDnþ1j
, the asymptotic estimate from formula (26) and the error j Nn

Dn
� lj. As expected, it is

not a strict upper bound of the error, but it is of the same order as the error, and this from the first recursion
step: it can therefore be used in practice to stop the computation at the desired accuracy.

7.3. Effect of the localization

Finally, we have studied the effect of truncating un beyond a certain radius Rcut on the convergence in the
two previous systems. For the Helium CFC, since the radius would contain all the nearest atoms of the com-
puted point, we use a super-cell instead of only one cell. We have computed the density in a super-cell of
4 · 4 · 4 cubic cell of size 25.4 Bohr, containing a total of 256 Helium atoms. In order to put these results
in perspective, we also used for the free electron gas a cell of side 25.4 Bohr, and the same chemical potential.

Figs. 5 and 6 show the convergence result without truncation and for truncation radius Rcut of 10 and
5 Bohr. As might be expected, the convergence is not changed, until we reach a point where the convergence
stops, but does not deteriorate. This is probably an indication that we have achieved convergence toward the
solution of the problem, with the boundary condition un(|r � ri|) = 0 for |r � ri| > Rcut, but this would require
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more investigation. The final error as a function of the cut-off radius is also the same for the free electron gas
and the Helium CFC: the free electron gas seems sufficient to estimate the final error as a function of the range
of the recursion vector. This reflects the fact the screening length is mostly defined by the electronic density.

8. Conclusion

In this work, we have established some convergence properties of the recursion method first introduced in
[12], and obtained what we think are interesting properties of the algorithm.
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First, in spite of the various approximations incurred, it is possible to obtain quite high an accuracy, at least
in the studied cases, and the convergence is smooth, linear and uniform. We think this is due to the use of the
exponential of the Hamiltonian, a compact operator, for which convergence properties of the recursion coef-
ficients is guaranteed. Second, the method is stable, truncating the un or using a large discretization step only
reduce the final precision of computation, but does not seem to affect the speed of convergence or induce insta-
bilities. Third, an accurate and easy to compute estimate of the error has been devised, a particularly useful
property when performing practical calculations.

Finally, the growth of the recursion vector, which is roughly controlled by the free electron gas term can be
evaluated and, coupled with the preceding error estimate allows to effectively truncate the recursion vector and
perform calculation with order N scaling.

We think this method paves the way for performing high temperature ab initio molecular dynamics.
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Appendix A. Asymptotic error estimate

We will here prove formula (26):
Nn

Dn
� l

����
���� ¼

Qnþ1
i¼1 b2

i

jDnDnþ1j
1þ Oðb2

nþ2Þ
	 

At this point, since we consider the expression (11) to be evaluated by continued fractions we will consider Dn

as a function of z and use the explicit notation Dn(z) only when necessary. Note that we wish to obtain esti-
mates for Dn(zj), where dðzj;RþÞ > 0 . If one of the bn is zeros, then the recursion stops at order n and the limit
is exactly reached at n. That formula is then verified.

Let’s assume that all bn are non-zero. We first write Nn
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as a series:
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It is here useful to notice that for k P n + 2:
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We need only to prove that Dn
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is bounded independently of n.

Let’s assume that j Di�2
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j is bounded independently of i:
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2M for i P n0. We then have for n P n0:
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which gives the result.
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We will now prove that j Di�1

Di
j is bounded, which will complete the proof.

We will use the localization of the roots of Dn(z). Dn(z) is the characteristic polynomial of Mn:
Mn ¼

a0 b1

b1 a1
. .

.

. .
. . .

.
bn

bn an

2
666664

3
777775
The localization of roots of characteristic polynomial of such matrix is known: let’s write (ki,n)i=0,. . .,n the n + 1
roots of Dn(z), sorted in decreasing order:
kn;n 6 kn�1;n 6 � � � 6 k1;n 6 k0;n:
Then the roots (ki,n+1)i=0,. . .,n of Dn+1(z) are all distinct and strictly separated by the roots of Dn:
knþ1;nþ1 < kn;n < kn;nþ1 < � � � < k1;nþ1 < k0;n < k0;nþ1
(for proof, see [25, Chapter 5]).
The end of the proof is summarized on Fig. A.1. There is a i0 2 s � 1, nb so that ki0þ1;n 6 Rez < ki0;n (with

i0 = �1 or i0 = n if Rez 62 [kn, nk0,n]). If j P i0 + 1, then kj+1,n+1 < kj,n 6 Rez, and then |z � kj,n| < |z � kj+1,n+1|.
If j 6 i0 then kj,n+1 > kj,n > Rez, and then |z � kj,n| < |z � kj,n+1|. It follows:
jDnj ¼
Yn
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jz� kj;nj <
Yi0
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jz� kj;nþ1j
Yn
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with C ¼ 1
dðz;RþÞ. This complete the Proof.
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